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ABSTRACT

When a global atmospheric basic state has constant angular velocity and its temperature varies with
altitude only, there exist normal mode solutions to the linearized global primitive equations. The use of
these normal modes, which have known behavior in time, is superior to the use of the Rossby-Haurwitz '
wave as initial conditions for detecting errors in the dynamics part of primitive equation global models.
With these initial conditions, integration through only one time step is sufficient to detect many formulation
and coding errors. Other tests are still required for detecting problems of nonlinear instability and conser-

vation of integral properties, however.

1. Introduction

Since Phillips’ work (1959), Rossby-Haurwitz
waves have been used commonly as initial conditions
for testing the formulation and coding of the dynam-
ics part of primitive equation global models (grid or
spectral) (e.g., Hoskins, 1973; Monaco and Wil-
liams, 1975). These Rossby-Haurwitz waves are the
eigensolutions for the oscillations of a nondivergent,
barotropic, thin fluid layer on the surface of a sphere.
A test with these initial conditions is sufficient to
detect many model errors, since after a few days of
running, the waves should retain their symmetry, or
antisymmetry, with respect to the equator and the
wave shape should remain smooth with the wave
evolution in time being regular. However, because
primitive equation models allow divergence, the ini-
tial Rossby-Haurwitz wave changes character with
its shape varying and its trough and ridge lines be-
coming distorted as the model continues running.
Since there is no simple and objective method to
determine the change in wave shape even when the
results pass the symmetry and smoothness test, there
is still uncertainty concerning the correctness of the
model.

We have found that a more sensitive and powerful
test is to use the eigensolutions for the free oscilla-
tions of the linearized primitive equations for the
adiabatic atmosphere (referred to here as normal
modes) as initial conditions. The properties and the
method of construction of these normal modes have
been studied extensively by many authors {e.g., Lon-
guet-Higgins, 1968; Kasahara, 1976). These solu-
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tions are commonly used in tidal studies (e.g., Sie-
bert, 1961; Chapman and Lindzen, 1970); in objective
analysis schemes (e.g., Flattery, 1971); in spectral
analysis of global data (e.g., Kasahara, 1976); in
nonlinear normal model initialization (e.g., Mach-
enhauer, 1977); in the design of schemes for nu-
merical time integration (Daley, 1980); and in spec-
tral modeling (Kasahara, 1977, 1978).

Since these normal modes have known behavior
in time and are exact solutions of the linearized prim-
itive equations, the normal modes should serve as
better initial conditions than the Rossby-Haurwitz
wave solutions in the testing for errors in the for-
mulation and the coding of the dynamics part of
primitive equation global models. Slightly less ob-
vious is that once the existence of any errors is re-
vealed, the equations that contain these errors can
be easily identified. This will be detailed in the fol-
lowing sections.

2. Normal mode initial conditions for testing

The horizontal structure of the normal modes is
the Hough function, which can be specified by its
equivalent depth h,, zonal wavenumber, meridional
mode and wave class. Having specified these param-
eters, the latitudinal structure of the perturbation
velocities and height (1, v', #'), along with the nondi-
mensional eigenfrequency &, can be obtained by us-
ing computational methods given in the literature on
Hough functions (e.g., Kasahara, 1976).

The simplest vertical structure for the normal
modes is for the case of an isentropic basic state
stratification. The equivalent depth in this case is the
scale height at the surface (Siebert, 1961). Since the
isentropic atmosphere and “shallow water” are phys-
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ically and mathematically analogous (Siebert, 1961),
it is apparent that horizontal velocities are uniform
in height and can be specified as u = cu’ cos(k\) and
v = cv’ sin(k)\), where ¢ is an arbitrary constant, A
longitude and k the zonal wavenumber. In addition,
the surface pressure p, can be specified by p; = p,
+ ps = po + cpogh’ cos(k)), where p, and p, are the
surface pressure and density of the basic state and
g is the acceleration due to gravity. The temperature
at any level can be found immediately, since the po-
tential temperature and the pressure are already
known. The pressure at the top of the model should
be zero. If the model formulation does not permit
this, the solution constructed in this way is nearly
exact if a very small value for the pressure at the top
of the model is used.

Depending on the model formulation, there are
some situations for which the isentropic normal mode
initial conditions cannot detect errors associated with
the dv/ds terms in the equations, where s is the ver-
tical coordinate. For instance, in an advective form
(as opposed to the flux form) model, an incorrect
factor or an incorrect sign multiplied by the dv/ds
terms will escape detection (since dv/ds = 0). More-
over, in a sigma (o) coordinate system, since ¢ equals
zero; errors in the ¢ terms may escape detection.
Thus, as a supplementary test, one may use the
isothermal atmosphere, 7 = T, as the basic state for
the initial conditions. In this case, the equivalent
depth is v H, where « is the ratio of the specific heats
(v = ¢,/cy,) and H (=RT,/g) is the scale height.
Furthermore, the vertical structure equations are
only slightly more complicated than those in the is-
entropic case (Siebert, 1961; Geller, 1970). The ini-
tial conditions are given as follows?:

u = cue’™(dY/dz — '»Y) cos(k)),
cv'e?’*(dY/dz — 2Y) sin(k)),
T = To — chToke*’*Y cos(k)),

Ps = po + cpogh’ cos(k)),

where z = Z/H = In(py/p), « = R/c,, Y = exp[—(%
~ Hkhy™")z'/?], and % is altitude.

Also, it is known that the angular speed v of the
normal mode is v = 242, where Q is the earth’s an-
gular speed (when ¢ is positive, the wave moves east-
ward). Moreover, if there is a basic flow of solid
rotation with angular speed w, then v = 26(Q + w)
+ w. Somewhat arbitrarily, we elected to use the
mixed Rossby-gravity mode with wavenumber 1 for
our tests. We also specified w as zero and an arbitrary
nonzero value in separate tests. The value of ¢ was
set such that the maximum v velocity was 15 m s™".

v

2 Note that since we are concerned with free modes, these so-
lutions are for zero vertical velocity at p = p; and p = 0, i.e., we
are dealing with a single external mode.
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3. Discussion

In the previous section we chose to use the normal
modes of the primitive equations instead of those of
the model for two reasons. The construction of the
model normal modes is a major undertaking and
must be performed for an individual model (Wil-
liamson and Dickinson, 1976). Moreover, if the
model with model normal mode initial conditions
produces incorrect results, it may not be easy to tell
if the error(s) exist(s) in the model or in the program
that generates the initial conditions.

Since normal modes of the primitive equations are
used, it is necessary to have a sufficient number of
vertical levels to simulate them properly. However,
isentropic initial conditions are good for any number
of levels.

For short-term tests (e.g., 12 h) and for small wave
amplitude, it is expected that the nonlinear effects
and the differences between normal modes of the
primitive equations and those of the model are neg-
ligible. Thus, in the runs starting from the normal
mode initial conditions, the wave shape should
change very little and the phase change should be
very close to the theoretical estimate. In this sense,
the normal model initial conditions are superior to
the Rossby-Haurwitz wave initial conditions.

The model integration for one time step starting
from the normal mode initial condition is sufficient
to detect most errors. If, after one time step, any of
the prognostic variables deviates from its analytical
solution, it is immediately apparent that there is
something wrong in the formulation or the coding
of the equation governing that variable. This infor-
mation can greatly facilitate the eventual locating
of the error(s).

It should be stressed that although we have found
these normal mode initial condition tests very useful,
this is only one step in the testing of such models.
The correct formulation and coding of the nonlinear
terms need to be tested as do the nonlinear stability
and conservation properties of the model. Our ex-
perience has shown that normal mode initial condi-
tion testing is a very simple and efficient way to
quickly locate and correct many of the errors in for-
mulating and coding the dynamics part of global
primitive equation models, however.
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ABSTRACT

The history of the theory of orographic rain, and recent evidence against the “stable upglide” model, are -
briefly reviewed. A new model is proposed in which the blocking of low level air by a mountain causes
approaching cold air to override the warm air, producing an unstable layer upstream of the mountain. This
model is compared with recent observations in the Cascades and San Juan Mountains. The suggestion is
that under some conditions it is the blocking action of the mountain, rather than forced ascent, which causes

enhanced precipitation.

1. Introduction

The influence of mountains on the global distri-
bution of precipitation, particularly the upslope rain-
rain shadow contrast across major mountain ranges,
is well documented. The idea that upslope rain is
caused by the adiabatic cooling of moist air forced
to rise following the topography, was put forward in
the 19th century as one of the first applications of
modern thermodynamics to the atmosphere. An espe-
cially clear description of this process was given in
John Tyndall’s The Forms of Water published in
1872. Certainly this theory was well established by
1920 when the Norwegian physicist Vilhelm Bjerknes
used this “simplest” of rainfall situations as a ref-
erence point in his discussion of the more complex
rain systems in moving frontal cyclones.

The theory of smooth orographic lifting seems to
have been first questioned by Mr. L. C. W. Bonacina
in a meeting of the Royal Meteorological Society in
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1945. He pointed out that orographic rain does not
occur every time a moisture laden wind approaches
a mountain slope. Heavy upslope rain seems to re-
quire a combination of orography and some sort of
meteorological preconditioning associated with an
existing weather disturbance. Bonacina further sug-
gested that the “preconditioning” is most likely the
establishment of near instability in the column of air
approaching the mountain. In the same forum two
years later, Douglas and Glasspoole (1947) showed
that the only special condition needed to account for
orographic rains in Wales and Scotland was a deep
layer of nearly saturated air—thus promoting the-
smooth ascent idea. It is evident from the discussion
which followed their presentation, that the audience
was not fully convinced as to the correctness or the
generality of their conclusions. The observation that
orographic rain often begins well upstream of the
mountain was mentioned as counter evidence. Yet,



